
&
Lawrence
Livermore
National
Laboratory

Preprint
UCRL-JC-144040

A Split-Step Scheme for
the Incompressible Navier-
Stokes Equations

W. D. Henshaw, N. A. Petersson

This article was submitted to
Workshop on Numerical Simulations of Incompressible Flows
Half Moon Bay, CA
June 19-21, 2001

June 12,2001
U.S. Department of Energy

Approved for public release;further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes maybe
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientificand Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Pricesavailable from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http:/ /www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/tid/Library.html



A Split-Step Scheme for the Incompressible Navier-Stokes

Equations

William D. Henshaw
N. Anders Petersson

Centre for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA, 94551,
henshaw@llnl.gov, andersp@llnl.gov

June 12, 2001

Abstract

We describe a split-step finite-difference scheme for solving the incompressible
Navier-Stokesequationson compositeoverlappinggrids. The split-stepapproach decou-
ples the solution of the velocity variablesfrom the solution of the pressure. The scheme
is based on the velocity-pressureformulation and uses a method of lines approach so
that a variety of implicit or explicit time stepping schemescan be used once the equa-
tions have been discretized in space. We have implemented both second-order and
fourth-order accurate spatialapproximationsthat can be used with implicit or explicit
time stepping methods. We describe how to choose appropriate boundary conditions
to make the scheme accurate and stable. A divergence damping term is added to the
pressureequation to keep the numericaldilatation small. Severalnumerical examples
are presented.

1 Introduction

We consider solving the incompressible Navier-Stokes equations with finite difference meth-
ods on composite overlapping grids. We describe a split-step (or fractional-step) approach
that decouples the solution of the velocity from the solution of the pressure. We describe
how to design the method to be accurate and stable. Second-order and fourth-order accu-
racy has been achieved in space and second or higher order accuracy in time can be easily
accomplished.

In primitive-variables the initial-boundary-value problem (IBVP) for the incompressible
Navier-Stokes equations is

th.I/6’t + (u oV)u + Vp = VAU + F, for x E Q, t>o
vu = o, for x C Q t>o

B(u,p) = g forx EiiKl, t>O
(1)

U(X>o) = f(x) forx Efl

Here u = (UI, U2,U3) is the velocity, p is the pressure, Q is a bounded open domain in I@,
d = 2 or d = 3 and 6’Q is the boundary of Q. The initial conditions should satisfy V. f = O.
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There are d boundary conditions denoted by B (u, p) = O. On a fixed wall, for example, the
boundary conditions are u = O. We assume that all data are sufficiently smooth. Depending
on the boundary conditions the pressure may only be determined up to a constant in which
case we impose the average pressure to be zero. We refer to the formulation (1) as the
“velocity-divergence” formulation.

An alternative form of this IBVP, which we call the “velocity-pressure” formulation, is

&I/& + (u oV)u + Vp = VAU + F, for x c Q, t>o
Ap+J(Vu)–a(x)V. u = V*F for x E Q, t>o

B(u, p) = g forx E6’Q t>O (2)
vu = o for x E 6’!2

U(x, o) = f(x) forx EQ

where

d

J(vu) = ~ Vum o-#
m,=1 m

The equation, V . u = O, for the dilatation in (1) has been replaced by an elliptic equation
for the pressure which is obtained by taking the divergence of the momentum equations,
and using V . u = O. Since we have raised the order of the system, this formation requires
d + 1 boundary conditions; an extra boundary condition on the dilatation has been added.
The boundary condition V . u = O can be thought of as the boundary condition for the
pressure equation. We have also added the divergence damping term, a(x) V ou, a >0,
to the pressure equation. Although in the continuous case this term has no effect, in the
discrete case this term will be important to keep the dilatation small. To see why this term
might be important we can write down the equation satisfied by the dilatation, d = V . u,
formed by taking the divergence of the momentum equation,

6+7/6Y+ (u. V)d= VA3 – cd. (3)

The term we have added to the pressure equation appears as a linear damping term in the
evolution equation for the divergence. Note that 6(x, t)will be identically zero for all time
since the initial conditions are 6(x, O) = O and the boundary conditions are 6(x, t) = O.

This observation can be used to show that two formulations (1) and (2) are equivalent, at
least for solutions that are sufficiently smooth. We also see the reason for adding boundary
condition, V . u = 0, since it forces the dilatation to be zero.

The incompressible Navier-Stokes equations in primitive variables can be discretized in
a variety of ways. Harlow and Welch [7] were perhaps the first with the MAC method using
staggered grids. Later the projection method was devised by Chorin[4] and independently by
Temam[22]. The projection method was extended to an implicit fractional-step method by
Kim and Moin[14]. Since that time there have been numerous other approaches developed
based on finite-difference, finite-element and spectral-element discretizations, such as [1, 2,
13, 23, 15, 20, 8] to name a few.

There are three fundamental issues that must be dealt with when designing a scheme
for the incompressible Navier-Stokes equations:

● The pressure should be free of spurious oscillations. Straight-forward discretizations
of (1) can lead to the checker-board instability (corresponding to a violation of the
Babtika-Brezzi condition in finite-elements).
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● Many approaches require extra boundary conditions, either for the pressure or for an
intermediate velocity field, which can be non-trivial to choose.

● If the pressure is only determined up to a constant (for example when Neumann
boundary conditions are enforced on EKl), there will be a compatibility condition on
the data for the pressure equation.

There have been long discussions in the literature related to these three issues, especially
concerning boundary conditions for the pressure [6, 16, 13, 20] and whether fractional-step
projection methods are inherently first-order accurate in the pressure [17, 21, 19, 5]. We
refer to Brown et. al. [3] for a discussion of how to get second-order accuracy in the pressure
with the fractional-step projection method. In this paper, we summarize the results of our
research, and describe how the above three issues are handled in our method.

Here we describe a straight-forward approach that leads to an efficient second (or higher)
order accurate scheme in both the velocity and the pressure. We use a method of lines
approach to discretize the velocity-pressure formulation (2). We begin by discretizing in
space. For ease of presentation we consider solving the equations in two dimensions on the
unit square, using a rectangular grid, with grid spacing h = 1/lV, for N a positive integer,

G = {xi = (~i, vi) = (ih, jh) i,j=–l, o, l,.. ., N+l}

Here i = (i, j) is a multi-index. We include ghost points at the boundaries to aid in the
discretization. To be specific we consider a Dirichlet boundary condition for the velocity,

U(x, t) = g(x, t). (4)

We first discretize in space. Let (Ui(t), Pi (t)) be the numerical approximation to
(u(x, -t),p(x, t)) with Ui(t) = (Ui(t)7 u(t)). Then the spatial approximation is

wi/dt = _(Ui . Vh)ui – V~l’i + vA~Ui + F(xi, t), i,j=l,2, . . ..l–l (5)

dhl’i = ~ivh . ui – ~(vhui) + V~ “F(xi, t), i,j=o, 1,2, . . . ,N (6)

Ui = g(Xi, t) S (g”, fJv)(Xijt) i=o, j=o, 1,2, . . ..N (7)

Do~Ui = ‘Dl)~fJy 2=o, j=o, 1,2, . . ..N (8)

The boundary conditions have only been specified at z = O; similar expressions will hold at
the other boundaries. The operators Vh, Ah are the standard centred difference approxi-
mations to V and A,

vh . ui = ~O~Ui + ~l)~ui , AhUi = (~+.~.. + ~+~~-~)ui

u~+l– u2_l
Do~Ui = Zh

Uz+l– Ui
D+~Ui = ~

The divergence boundary condition

Uj+l– Uj.1
7 Do’yUi =

2h
~_ u = Uz– u&~

7 x i
h

(8) should be thought of as determining the ghost line
value of the horizontal velocity component, U–1,j. Since we have directly discretized the

pressure equation using a compact difference approximation we avoid the checker-board
instability problem. The discrete approximation will require extra numerical boundary
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conditions. Applying the general principle for deriving numerical boundary conditions de-
scribed in [12] we use the equations themselves to tell how the solution should behave at
the boundary. Note for example, that the pressure equation (6) is applied on the boundary,
i = O. As a numerical boundary condition we could also apply the momentum equations
on the boundary and thus determine the values for U– 1,j. However, in order to keep the
solution of the pressure decoupled from the velocity we instead only apply the normal
component of the momentum equation on the boundary,

t)p

i%
= n o(–g~ – (g oVu) + vAu) (9)

and then extrapolate the tangential component of the velocity. We call this the div-grad
pressure boundary condition. Note that the boundary condition (9) is just the normal
component of the momentum equation applied on the boundary. It adds no new information
to the continuous PDE and cannot be used as the extra boundary condition required by
the velocity-pressure formulation. It turns out that for implicit time stepping a more stable
boundary condition is formed by explicitly removing the dilatation in the highest order
term, Au, by using the vector identity

Au=v(v. u)–vxvxu

together with V (V . u) = O to give

ap

K
=n. (–gt–(g. Vu)–vVx Vx u) (lo)

We call this the curl-curl boundary condition for the pressure. This boundary condition
was apparent ly first advocated by Karniadakis, Israeli and Orszag [13] as the appropriatee
boundary condition for the pressure. Unlike equation (9) this new equation does add new
information and can be used as an alternative boundary condition to V . u = O. From our
point of view this boundary condition is actually specifying a boundary condition on the
normal derivative of the dilatation, n. V(V . u) = O, or

:( V. U)=O. (11)

since (10) was derived from
above boundary condition,

(9) using (11). Referring back to equation (3) we see that the
together with the initial condition cl(x, O) = O, will also force

the dilatation to be zero for all time. The stability analysis for this scheme can be found
in [18]. The remaining boundary conditions for the discrete scheme are thus a discretization
of (10), and extrapolating the tangential component of the velocity,

Dl#oj = –vD+.D–yvoj (12)

D;ZV_lj = V_lj – 3Voj + 3VIj – V2j = O (13)

Here we have taken g = O to show the essential features of the boundary condition. The
equations (5-8, 12, 13) can be solved with a method of lines approach. If we wish to
have a split-step scheme where the solution of the pressure equation is decoupled from the
solution of the velocity components we should choose a time stepping scheme for the velocity
components that only involves the pressure from previous time steps. Let us introduce the
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operators L = LE + LI representing various terms in the momentum equation:

LUi = – (Ui . V~)Ui – V~Pi + ~A~Ui (14)

LEUi = –(ui . v~)ui ––v~~i (15)

LIUi = vAhUi (16)

LI and LE will be the parts of the operator that we will later on treat implicitly and
explicitly, respectively.

As a first example we could solve these equations with an explicit multi-step method
such as an Adams-Bashforth scheme. In this approach we first advance the velocity using

Un+l _ up
i

At
‘ = ;(LLJ?+FP) - ;(LUP+W) i7j=l,27. ... l—l (17)

Here Up x
points. We

Uy+l = g(xi, tn+l) i= O,j=O, l,. ... N (18)

Do.u;+l = –Dovg:+l i=o, j=o, l,. ... N (19)

D:ZV:;l = O j= 0,1, . . ..N (20)

‘+1 at all points including the ghostu(xi, nAt). These equations determine Ui
then solve for the pressure from

A~.P~+l – ~ivh . U~+l + ~(VhU~+l) = O i,j=0,1,2, . . ..iV (21)
n+l _DozPoj – n+l–vD+zD.y Voj (22)

In this case one could also use the discrete form of (9)

n+l _Dozl=oj – n+l–vD+zD.JJoj (23)

instead of (22). To improve the stability properties of the time-integrator, we often use the
above scheme as the predictor followed by a second-order Adams-Moulton corrector.

As another example, we have implemented a semi-implicit method
Crank-Nicolson approach for the viscous terms and an Adams-Bashforth
advect ion terms and pressure. Instead of equation (17) we use

that combines a
approach for the

together with equations (18-20). Since the boundary condition for the pressure depends
on v/h2 and since the pressure is taken explicitly in the time stepping scheme it could be
that At depends on the ratio h2/v. This is indeed the case when (9) is used as a boundary
condition for the pressure. However, a stability analysis of this method [18] shows that the
time step is only determined by the advection terms (i.e. is independent of v) if (9) is
replaced by the curl-curl boundary condition (10). This is somewhat remarkable, since the
pressure is treated explicitly.

It is straight-forward to build time stepping schemes that are accurate to any desired
order in time. The reason for this is that in the approach we have taken we have effectively
reduced the solution of the incompressible Navier-Stokes equations to solving a system of
ODE’S for Ui:

$Ui = F(Ui, t),
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since we can treat the pressure simply as a function of the velocity.
The difference approximation presented here can be easily extended to curvilinear grids

and to composite overlapping grids. The approximations can be also be made fourth order
accurate in space, see [9] for further details.

If the pressure has a Neumann boundary condition on all boundaries the pressure equa-
tion will be singular. In order to solve this singular system one could, for example, eliminate
one equation and replace it with an equation that, for example, sets the value of p at a point
or sets the mean value for p. Rather than single out a particular equation to be removed
we prefer to use a different approach which is better conditioned. If we denote the equation
for the pressure as the matrix equation,

Ax=b (24)

then we solve the augmented system

Here r is the right null vector of A, the vector will all components equal to one. This
augmented solution will have a unique solution. The last equation will set the mean value
of p.

It is important in practice to include the divergence damping term, ~i V~ . Ui, in the
pressure equation (6). One could alternatively apply an extra explicit projection to the
solution after every step, but this would require a significant amount of extra work. The
damping coefficient a(x, t) can be chosen to be quite large. When using an explicit time
stepping approach we choose

(25)

where the coefficient C’~ is usually taken to be about one. On a rectangular grid this makes
a proportional to 1/At. Note that on a curvilinear grid the coefficient will vary in space.
One might wonder whether this divergence damping term, which is a potentially order one
addition to the pressure equation, will destroy the accuracy of the method. In [11] we
analyse this damping term using normal-mode stability analysis and show that the method
retains it’s accuracy even with this term. In practice we find that increasing 6“ will result
in a decrease of the maximum dilatation (up to a point) but also an increase in the error
in the pressure.

A von Neumann stability analysis shows that the allowable time step, At, will depend on
the size of a. For implicit methods we do not want the damping coefficient to significantly
reduce the time step so it is necessary to limit the size of a by C/At for a constant C = 0(1).

2 Numerical results

In this section we present some results from a numerical implementation of the scheme
described in this paper. The method was implemented in the OverBlown flow solver.
OverBlown is developed using the Overture object-oriented framework and can solve
the incompressible Navier-Stokes equations on composite overlapping grids in two and three
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space dimensions. Both OverBlown and Overture are freely available from the web. Cur-
rently OverBlown only has a second-order accurate spatial approximateion implemented,
although a fourth-order accurate method has previously been developed in Fortran [9].

Details on the discretization and solution procedure, as well as more extensive conver-
gence studies can be found in [10].

As a first test we use the method of analytic solutions to define the following exact
solution to the (forced) two-dimensional incompressible Navier-Stokes equations,

12
u~rue(z,y,t) = ($2 + 2Z?J+ y2)(l + ;t + # )

Vtr.e(z, $!,t) = (Z2 – 2zy – y2)(l + ;t + $2)

Ptrue(~,V,t) = (Z2 + ~zY + Y2 – 1)(1+ # + ~t2)

The exact solution is has been chosen to be divergence free which simplifies the implemen-
tation. This test example is extremely useful for our purposes since this solution should also
an ezact solution to the discrete equations on a rectangular grid. Indeed the errors obtained
when solving this problem are the order of round-off error for grids consisting of a single
square and also for a composite grid consisting of a rotated square in a square as shown in
table (2). For debugging purposes this is an excellent test since the numerical errors should
be exactly “zero” at every time step. It is not necessary to run extensive convergence tests
on multiple grids to check convergence rates.

In three dimensions we use the exact solution

Ut~Ue(Z,y, t) = (X2 + 2Z’ZJ+ Y2 + ZZ)(l + ~t + ~t2)

‘qrue(z, y, t) = (Z2 – 2zy – y2 + 3ZZ)(1 + ;t + $)

w~rue(z, y,t) = (Z2 + y2 – 222)(1 + ;t + ;P)

Ptrue(z, Y>’) = (Z2 + ~zY + Y2 + ‘2 – 1)(1+ ;t+ ;F)

with results shown in table (2) for a box.

grid method ]Ip-pe[[m \lu- Ue[[m llV- vellm [[w - Wel[w llV . Ul[m
square lO explicit 3.1 x 10–15 1.8 X 10-15 8.9 X 10-16 6.2 X 10-15
square lO implicit 1.2 x 10-14 9.8 X 10-15 3.8 X 10-15 5.0 x 10-14
sis explicit 1.3 x 10-14 3.6 X 10-15 3.2 X 10-15 1.2 x 10-14
boxlO explicit 1.8 X 10-14 2.7 X 10-15 1.6 X 10-15 1.8 X 10-15 1.6 X 10-14

Table 1: Maximum errors when the analytic solution is a quadratic polynomial, v = .1,
t = 1.0. Since the grids are rectangular the method gives the exact answer to within
roundoff. The grid SIS“ “ “ is the square-in-a-square overlapping grid consisting of a square
embedded in a larger square shown in figure (1).

7



1,s

ICC

03

O.ca

-0,$3

-1.W
\jY+ _-Y’’’m;l / 1

—.-
–2.cO -1 m -1.CO -050 003 O.w Mm 1.53 27X

x

Figure 1: Grids used for the convergence studies: circle-in-a-channel (top-left ), square-in-
a-square (top right), sphere-in-a-box (bottom left)

Tables (2) and (2) show convergence results when the solution is taken as a trigonometric
polynomial. The 2D trigonometric solution used as a twilight zone function is

‘ut..~ = ; COS(7’WOZ) Cos(mdly) cos(Ld37rt) + ;

vtrUe= ~ sin(7rwOz)sin(7rwly) cos(u37rt) + ~

f%., = cos(7rwoz) Cos(muly) cos(w37rt) + ;
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The 3D trigonometric solution is

Utrue =COS(’iT(.LJOZ) COS(TbJI~) COS(fiU2Z) COS(W3~t)

‘ut~~~ = ~ sin(7rwOz)sin(m.uly) cos(mdzz) cos(w37rt)

wt~~~ = ~ sin(7ruOz)sin(7ruly) sin(7rwzz)cos(w37rt)

ptrue= ~ sin(mwx) cos(m.dly) cos(7ruzz) sin(ws7rt)

With W. = WI = wz it follows that V . u = O. Values of W. = WI = W2 = 1 were used
in the computations discussed here. At the bottom of the table we show the estimated
convergence rates obtained by a least squares fit to the errors.

grid hllhq llP– Pt?llco Ilu– Uellco Ilv – Vellca [[v. U[[m
g=l 1 2.4 X 10-1 1.6 X 10-1 1.6 X 10-1 5.0 x 10-1
g=2 2 5.5 x 10-2 2.4 X 10-2 2.5 X 10-2 1.3 x 10–1
g=3 4 1.5 x 10-2 5.0 x 10-3 4.3 x 10-3 2.3 X 10-2
rate 2.0 2.5 2.6 2.2

Table 2: Maximum errors at t = 1. for a trigonometric analytic solution with v = .1. The
domain is discretized by the circle-in-a-channel grid shown in figure (l). The time stepping
was a second-order explicit predictor corrector method.

grid hl lh~ llp ‘Pellcc IIU– Ue/lcc Ilv– Vellco Ilw– ‘ellm llV.Ullm
g=l 1 3.3 x 10-1 1.2 x 10-1 1.0 x 10-1 8.8 x 10-2 4.7 x 10-1
g=2 2 5.0 x 10-2 3.6 X 10-2 3.0 x 10-2 2.0 x 10-2 2.3 X 10-1
g=3 3 2.2 x 10-2 1.2 x 10-2 1.2 x 10-2 9.9 x 10-3 1.3 x 10-1
rate 2.5 2.1 1.9 2.0 1.2

Table 3: Maximum errors at t = 1. for a trigonometric analytic solution with v = .05.
The grid is a sphere-in-a-box. The coarse grid, g=l, consists of component grids with
173U 12 x 12U 12 x 12 grid points.

To illustrate the effect that the damping term has on the solution we present some
convergence studies. We force the equations so that the true solution is known. In two
space dimensions the equations are forced so that the exact solution will be

Utrue(z,y, t) = ( sin2(f~)sin(2fY)cos(2~~) ~ -sin(2f~)sin2(fY)cos(2~t) ) ~

Ptrue($>Y,’) = sin(jx) sin(~y) cos(27rt) .

We solve the IBVP with and without the damping term turned on. The domain is taken to
be the unit square will all boundaries being walls where the velocity is specified. The results
for the fourth-order method are given in tables (4) and (5), Indicated are the maximum
errors in u, p and V ou. The estimated convergence rate IS,error R hti, is also shown. a is
estimated by a least squares fit to the maximum errors given in the table.
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The results show that although the methods are converging at the expected rates without
the damping term, the errors are significantly reduced when damping term is used.

rate 5.0 4.2 5.4

Table 4: Maximum errors at t = 1.with the 4th order spatial approximation and v = .05.
The divergence damping coefficient is cd = 1. Compare these results to table (5) where no
divergence damping is used.

grid [Ill - Ue[[m Ilp-pe][m Ilv . Ul]m
20 x 20 2.4 X 10-3 1.3 x 10-2 6.4 X 10-2
30 x 30 5.1 x 10-4 2.5 X 10-3 1.3 x 10-2
40 x 40 1.7 x 10-4 8.2 X 10-4 4.4 x 10-3

rate 3.8 4.0 3.9

Table 5: Maximum errors at t = 1.with the 4th order spatial approximation and v = .05.
The divergence damping coefficient is cd = O. Compare these results to table (4) where
divergence damping is used.

To illustrate the benefits of using the curl-curl boundary condition (10) we compare
the numerically determined largest stable time-step for the implicit time-stepping scheme
in table (6). The allowable time step for the curl-curl boundary condition is independent
of v/h2 so that At only depends on the advection terms (which are treated explicitly). In
contrast the div-grad boundary condition (9) requires a At that depends on v/h2.

BC Grid At 11P- Pellm Ilu- %IIC9 Ilv - %IIC9 Ilv “411XJ
div-grad coarse 2.0 “ 10-3 5.8. 10-2 4.2. 10-2 8.6. 10-2 1.1 .10-1

div-grad fine 5.0. 10-4 5.7. 10-3 8.8. 10-3 1.5. 10-2 2.4. 10-2

curl-curl coarse 1.1 “ 10-2 5.8. 10-2 4.2. 10-2 8.6. 10-2 1.1 .10-1

curl-curl fine 5.5 .10-3 5.8- 10-3 8.8. 10-3 1.5 .10-2 2.4. 10-2

Table 6: A comparison of the div-grad boundary condition (9) and the curl-curl boundary
condition (10). Shown are the largest stable time-steps and maximum errors for a forced
computation. The time-step for the the curl-curl boundary condition can be chosen much
larger since it is does not depend on the ratio v/h 2. The grid is a circle-in-a-channel. The
coarse grid had 41 x 21 U 21 x 14 points and the fine grid had 81 x 41 U 41 x 27 points.

As an illustration of some more advanced applications of our approach, in figure (2) we
show the solution to an incompressible flow containing two rigid cylinders. The cylinders fall
under the influence of gravity and their motion is altered by the forces exerted by the fluid.
In this computation the overlapping grids are recomputed at every time step. Figure (3)
shows the flow past a rotating disk. Figure (4) shows the flow past a wing and flap.
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Figure 2: Two falling bodies in an incompressible flow.

3 Software availability

—-,,75

—-0s6

The OverBlown flow solver and Overture are freely available from the web at
http: //www. llnl. gov/case/Overture.
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Figure 3: Flow past a rotating disk.

References

[1]

[2]

[3]

[4]

[5]

[6]

1,818

1

-

I

1.529

1.241

~ ‘“’”

— 0,865

0.377

0.089

-0.199

-0.487

-0.776

-1.CW

S. ABDALLAH, Numerical solutions for the pressure poisson equation with Neumann
boundary conditions using a non-staggered grid, I, J. Comp. Phys., 70 (1987), pp. 182-
192.

J. B. BELL, P. COLELLA, AND H. M. GLAZ, A second-order projection method for

the incompressible navier-stokes equations, J. Comp. Phys., 85 (1989), pp. 257-283.

D. L. BROWN, R. CORTEZ, AND M. L. MINION, Accurate projection methods for the

incompressible Navier–Stokes equations, J. Comp. Phys., 168 (2001), pp. 464–499.

A. J. CHORIN, Numerical solution of the Navier-Stokes equations, Math. Comp., 22
(1968), pp. 745-762.

W. E AND J. GUO LIU, Projection method H: Godunov-Ryabenki analysis, Siam J. of
Numer. Anal., 33 (1996), pp. 1597-1621.

P. M. GRESHO AND R. L. SANI, On the pressure boundary conditions for the in-

compressible Navier-Stokes equations, International Journal for Numerical Methods in
Fluids, 7 (1987), pp. 1111-1145.

12



lncompr:~sible NS, nu=0.00e+OO (u,v)
0.4g0, dt=3.12e-04

- 2.070

m

Figure 4: Flow past a wing and flap.

[7] F. HARLOW AND J. WELCH, Numerical calculation of time-dependent viscous incomp-

ressible flow of fluid with free surface, J. Comp. Phys., 8 (1965), pp. 2182-2189.

[8] W. HEINRICHS,Splitting techniques for the unsteady stokes equations, SIAM J. of
Numer. Anal., 35 (1998), pp. 1646-1662.

[9] W. HENSHAW,A fourth-order accurate method for the incompressible Navier-Stokes

equations on overlapping grids, Journal of Computational Physics, 113 (1994), pp. 13–
25.

[10]— OverBlown: A jluid flow solver for overlapping grids, user guide, Research Re-
port ‘UCRL-MA-134288, Lawrence Livermore National Laboratory, 1999.

[11] W. HENSHAWAND H.-O. KREISS, Analysis of a difference approximation for the

incompressible navier-stokes equations, Research Report LA-UR-95-3536, Los Alamos
National Laboratory, 1995.

[12] W. HENSHAW, H.-O. KREISS, AND L. REYNA, A fourth-order accurate difference
approximation for the incompressible Navier-Stokes equations, Computers and Fluids,
23 (1994), pp. 575-593.

13



[13] G. KARNIADAKIS,M. ISRAELI, AND S. A. ORSZAG, High-order splitting methods for

the incompressible Nazier-Stokes equations, J. Comp. Phys., 97 (1991), pp. 414-443.

[14] J. KIM ANDP. MOIN, Application of a fractional-step method to incompressible Navier-
Stokes equations, J. Comp. Phys., 59 (1985), pp. 308-323.

[15] K. KORCZAK AND A. T. PATERA, An isoparametric spectral element method for so-

lution of the Navier-Stokes equations in complex geometry, J. Comp. Phys., 62 (1986),
pp. 361–382.

[16] S. A. ORSZAG, M. ISRAELI, AND M. O. DEVILLE, Boundary conditions ~orincom-
pressible flows, Journal of Scientific Computing, 1 (1986), pp. 75-111.

[17] J. B. PEROT, An analysis of the fractional step method, J. Comput. Phys., 108 (1993),
pp. 51-58.

[18] N. A. PETERSSON,Stability of pressure boundarey conditions j’or stokes and navier-

stokes equations, Research Report UCRL-JC- 137733, Lawrence Livermore National
Laboratory, 2000. To appear JCP.

[19] J. SHEN, On error estimates of the projection methods for the Navier-Stokes equations:

second-order schemes, Math. Comp., 65 (1996), pp. 1039–1065.

[20] J. STRIKWERDA,Finite difference methods for the Stokes and Navier-Stokes equations,

SIAM J. Sci. Stat. Comput., 5 (1984), pp. 56-68.

[21] J. C. STRIKWERDAANDY. S. LEE, The accuracy of the fractional step method, SIAM
J. Numer. Anal., 37 (1999), pp. 37-47.

[22] R. TEMAM, Sur l’approximation de la solution des equation de Navier-Stokes par la

m~thode des fractionnarires ii, Arch. Rational Mech. Anal., 33 (1969), pp. 377–385.

[23] J. A. WRIGHT ANDW. SHYY, A pressure-based composite grid method for the Navier-

Stokes equations, J. Comp. Phys., 107 (1993), pp. 225-238.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405 -Eng-48.

14




